
Data Compression

LZ77

Jens Müller

Universität Stuttgart

2008-11-25

Outline

• Introduction – Principle of dictionary methods

• LZ77 Sliding window

• Examples

• Optimization

• Performance comparison

• Applications/Patents

2Jens Müller- IPVS – Universität Stuttgart

Principle of dictionary methods

• Compressing multiple strings can be more efficient

than compressing single symbols only (e.g. Huffman

encoding).

• Strings of symbols are added to a dictionary. Later

occurrences are referenced.

• Static dictionary: Entries are predefined and constant

according to the application of the text

• Adaptive dictionary: Entries are taken from the text

itself and created on-the-fly

Jens Müller- IPVS – Universität Stuttgart 3

LZ77

• First paper by Ziv and Lempel in 1977 about lossless

compression with an adaptive dictionary.

• Goes through the text in a sliding window consisting

of a search buffer and a look ahead buffer.

• The search buffer is used as dictionary

• Sizes of these buffers are parameters of the

implementation. Assumption: Patterns in text occur

within range of the search buffer.

Jens Müller- IPVS – Universität Stuttgart 4

the window…read throughis a text that is being…this

Look-ahead bufferSearch buffer

LZ77 – Example (Encoding)

Jens Müller- IPVS – Universität Stuttgart 5

a

a

7

(7,4,d)darbadacarb

output123456

darbad…ac

(2,1,d)ad rbadacarba

(3,1,c)bra…adacarba

(0,0,r)abr…dacarba

(0,0,b)dab…acarba

(0,0,a)ada…carba

Encoding of the string:
abracadabrad

Look-ahead

buffer

Search buffer

output tuple: (offset, length, symbol)

12 characters compressed into 6 tuples

Compression rate: (12*8)/(6*(5+2+3))=96/60=1,6=60%.

Size of output

• Size for each output tuple (offset, length, symbol)

when using fixed-length storage:

where S is the length of the search buffer, L the length of the

look ahead window, A the size of the alphabet.

• Why S+L and not only S? See next slide.

• Worst case if no symbol repeats in the search buffer:

Jens Müller- IPVS – Universität Stuttgart 6

     ALSS 222 log)(loglog +++

     ()
 An

ALSSn

2

222

log of instead

 log)(loglog of up Blow +++

Encoding reaches into look-ahead buffer

Jens Müller- IPVS – Universität Stuttgart 7

H

H

a

s

7 output123456

!AHAHA… HA

(2,1,!)!AHAHAHA…d:

(2,4,H)A!HAHAHAH:di…e s

(0,0,A)HH!AHAHAH:diahe

(0,0,H)AHA!HAHAH:diashe

Special case

Look-ahead

buffer

Search buffer

Encoding – Pseudo code algorithm

while look-ahead buffer is not empty

go backwards in search buffer to find longest match of the look-ahead buffer

if match found

print: (offset from window boundary, length of match, next symbol in look-

ahead buffer);

shift window by length+1;

else

print: (0, 0, first symbol in look-ahead buffer);

shift window by 1;

fi

end while

Jens Müller- IPVS – Universität Stuttgart 8

Example (Decoding)

Jens Müller- IPVS – Universität Stuttgart 9

a

a

7

(7,4,d)

(2,1,d)

(3,1,c)

(0,0,r)

(0,0,b)

(0,0,a)

input

darbadabrac

123456

dacarb

carba

rba

ba

a

Decoding – Pseudo code algorithm

for each token (offset, length, symbol)

if offset = 0 then

print symbol;

else

go reverse in previous output by offset characters and copy

character wise for length symbols;

print symbol;

fi

next

Jens Müller- IPVS – Universität Stuttgart 10

LZ77 is asymmetric, encoding is more difficult than decoding as it needs to find

the longest match.

Optimizations

Jens Müller- IPVS – Universität Stuttgart 11

Successors following LZ77 used different optimizations:

• Use variable size offset and length fields in the tuples instead

of fixed-length. Better if small offsets and sizes prevail.

• Don‘t output a (0,0,x) token when character is not found but

instead differentiate using a flag-bit: 0|x or 1|o,l

• Use better suited data structure (e.g. tree, hash set) for the

buffers. This allows faster search and/or larger buffers.

• Additional Huffman coding of tuples/references.

-> LZSS, LZB, LZH, LZR, LZFG, LZMA, Deflate, L

Performance

Jens Müller- IPVS – Universität Stuttgart 12

Benchmark

(From Bell/Cleary/Witten: Text Compression)

bib book1 book2 geo news obj1 obj2 paper1 pic progc prog1 progp trans

0

1

2

3

4

5

6

7

8

LZ77

LZR

LZSS

LZH

B
its

/S
y
m

b
o

l

Applications, Patents

Jens Müller- IPVS – Universität Stuttgart 13

Unlike LZ78, LZ77 has not been patented. This may be a

reason why its successors basing on LZ77 are so widely used:

Deflate is a combination of LZSS together with Huffman

encoding and uses a window size of 32kB.

This algorithm is open source and used in what is widely known

as ZIP compression (although the ZIP format itself is only a

container format, like AVI and can be used with several

algorithms), and by the formats PNG, TIFF, PDF and many

others.

References

Jens Müller- IPVS – Universität Stuttgart 14

SOLOMON, D.: Data Compression, The Complete Reference., Springer, New
York, 1998

BELL, T. C., CLEARY, J. G., WITTEN, I. H.: Text Compression, Prentice Hall
Advanced Reference Series, 1990

SAYOOD, K.: Introduction to Data Compression, Academic Press, San Diego,

CA,1996, 2000.

ZIV, J., LEMPEL, A.: A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory 23 (1977), 337–343.

